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Abstract
A general scheme for constructing superintegrable systems for separated
Hamiltonians in an arbitrary number of degrees of freedom is presented.
The resulting family contains previously known superintgrable systems with
separated Hamiltonians (in Cartesian coordinates at least); however, in general,
the models belonging to the family admit additional integrals which are
nonpolynomial functions of momenta. An application of the method for the
construction of superintegrable models of Liouville type is described.

PACS numbers: 03.20.+i, 02.90.+p

1. Introduction

In this paper we study some classical superintegrable systems. A Hamiltonian system
of N degrees of freedom is called superintegrable if it is integrable in the Liouville sense
[2] and admits, in addition to N Liouville integrals, some further globally defined ones. The
maximal number of these additional integrals is N −1; in such a case we speak about maximal
superintgrability.

Maximally superintegrable systems have many interesting properties. Their trajectories,
in the confining region, are all closed; the choice of action-angle variables is not unique
(in particular, there exists a set of action-angle variables such that the Hamiltonian is a
function of one action variable only [11]); the separation of variables in the Hamilton–
Jacobi (HJ) equation is, in general, possible in more than one way; they posses a common
underlying symmetry [8, 13]. If the superintegrability property survives quantization, the
energy spectrum is highly degenerate, the energy eigenspaces carrying a representation of
nontrivial (non-Abelian) symmetry algebra.

The rather extensive list of known superintegrable systems is constantly enlarged. Many
examples of superintegrable models have appeared as a result of systematic search concentrated
on systems admitting integrals of motion at most second order in momenta [4, 6–8, 10, 23, 32].
It has been observed that this kind of ‘quadratic superintegrability’ is related to generalized
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symmetries [29] and exact solvability at quantum level [28]. Superintegrable systems with
quadratic integrals have also been considered in spaces of nonzero constant curvature [21, 27]
and of nonconstant curvature [19]. Most of these systems with quadratic integrals appear
to live in low-dimensional phase space. Remarkable exceptions are provided by the Kepler
problem, the Winternitz model [8] and its recent generalization [3] which are superintegrable
for an arbitrary number of degrees of freedom. Although the list of superintegrable systems is
in a sense dominated by rather well-understood and classified models with quadratic integrals
it is in no way exhausted by them. Systems with higher order integrals have been studied in [5,
9, 16–18, 20, 31]. Again, most of them have been identified in low-dimensional phase space.
Important exceptions are provided here by the harmonic oscillator with rational frequency
ratio, Calogero model [1] (with harmonic term), Calogero–Moser [33] (without harmonic
potential) and Sutherland models with hyperbolic potential [1, 14]. These superintegrable (in
any dimension) models describing interacting particles on line admit integrals polynomial in
momenta (except for the latter one).

The aim of this paper is to present some general scheme for constructing superintegrable
models in an arbitrary number of degrees of freedom. We expand here considerably (as well
as give more detailed arguments) the ideas contained in two previous notes [12, 15].

Our method does not assume any particular form of extra integrals from the very beginning.
Nevertheless, it enables one to produce a variety of superintegrable systems admitting also
integrals of higher order in momenta. Actually, in many cases these additional integrals appear
to be so complicated that they cannot be computed analytically. We also use our scheme to
construct superintegrable examples of the so-called Liouville Hamiltonians. The Liouville
models (not to be confused with the notion of integrability in the Liouville sense) form
the particular class of Staeckel systems which are general separable systems with quadratic
integrals of motion (see, for example, [25]).

The paper is organised as follows. Section 2 is devoted to the study of isochronic
potentials, i.e. those for which the period of motion is energy independent. We give the
general construction of such potentials both for the whole real axis as well as the semiaxis.
In section 3 these results are applied to construct superintegrable systems for completely
separated Hamiltonians. The method of finding additional integrals of motion is outlined. The
canonical transformation converting the superintegrable system into the set of independent
harmonic oscillators is written out. In section 4 we discuss the application of the method to
Liouville models. The explicit examples of such systems are constructed. In particular, we
describe a superintegrable Liouville Hamiltonian which can be viewed as the deformation of
a superintegrable harmonic one. Finally, section 5 is devoted to some conclusions. After
completing the paper we became aware of [24] where a similar strategy was used to construct
two-dimensional potentials admitting only closed orbits.

2. Isochronic potentials

Consider the one-dimensional motion on the whole real axis. We assume a potential V (x)

to be bounded from below and confining, for some energy interval at least. Without losing
generality it can be assumed that zero is the absolute minimum of V (x). Let us take into
account a trajectory corresponding to some energy E.

The motion, being confined, is periodic. Let T (E) be the period. In what follows we
assume T (E) to be continuously differentiable and nondecreasing in the confining region.
Note that V (x) can have no local minima in this region (except the global one). Indeed, if
there exists some additional local minimum then there is also a local maximum in between. It
corresponds either to the energy above the upper limit of confining energy interval or below it.
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Figure 1. Accessible regions of motion for
energy below the local maximum of potential,
V (x).

Figure 2. Accessible regions of motion for
energy above the local maximum of potential
V (x).

In the former case we can consider two separated intervals of motion (figure 1) while in
the latter T (E) tends to infinity in the neighbourhood of the maximum, in contrast to the
assumption concerning the behaviour of T (E), (figure 2). Therefore, one can assume that the
equation

V (x) = E (1)

has exactly two solutions x1,2(E) in the whole confining interval (except E = 0).
With the above assumptions, given the period function T (E) one can find all potentials

V (x) which produce T (E) from the equation (see [22])

x2(E) − x1(E) = 1

π
√

2m

∫ E

0

T (ε) dε√
E − ε

≡ f (E) (2)

where it is assumed that x2(E) > x1(E); f (E) is continuously differentiable and increasing
for E > 0.

All potentials satisfying (2) can be constructed as follows [12]. First, one can assume
without losing generality that the minimum of V (x) is attained at x = 0. For any x < 0 lying
in the confining region we look for (unique) E such that x = x1(E) and define a function ϕ by

ϕ(x) = x2(E). (3a)

Similarly, for x > 0 we take x = x2(E) and

ϕ(x) = x1(E). (3b)

Finally,

ϕ(0) = 0.

Then ϕ is a one-to-one mapping of the confining interval onto itself satisfying

ϕ ◦ ϕ = id. (4)

V (x) can now be written in the form

V (x) = f −1(|x − ϕ(x)|). (5)

Note that V (x) is differentiable provided f −1 and ϕ are differentiable. In fact, the only
troublesome point is x = 0 where one can make the harmonic oscillator approximation,
f −1(E) ∼ E2. All ϕ satisfying equation (4) can be found [15]. In what follows we will be
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mainly interested in the case when the confining region extends to R or R+. In the former case
we define

F(x) =
{
x x � 0
ϕ(−x) x > 0

(6)

then F : R → R is increasing, one-to-one and onto and

ϕ(x) = F(−F−1(x)). (7)

Note that F is not unique; in particular all odd functions F give ϕ(x) = −x.
Now, in order to deal with the potentials attaining their minimum at arbitrary point x = a

we should take ϕ such that ϕ(a) = a. Then ϕ1(x) ≡ ϕ(x + a) − a satisfies again ϕ1(0) = 0
and the construction above applies. The counterpart of equation (7) reads

ϕ(x) = F(c − F−1(x)) c = 2a. (8)

Assume now that the confining region is R+. Then V (x) takes the form

V (x) = f −1(|x − ϕ̃(x)|) (9)

where ϕ̃ : R+ → R+ is decreasing, one-to-one and onto. All such ϕ can be constructed by
noting that the function

ϕ = ln ◦ ϕ̃ ◦ ln−1 (10)

is of the type considered previously. In particular, instead of equation (8) we obtain

ϕ̃(x) = F̃

(
c̃

F̃−1(x)

)
(11)

where F̃ : R+ → R+ is one-to-one and onto. From the point of view of superintegrable
systems the most important is the case of constant T , T (E) ≡ T . Equations (2) and (5) imply
then the following form of the potential:

V (x) = mπ2

2T 2
(x − ϕ(x))2. (12)

With the help of equations (8) and (11) one can generate many examples of such ‘isochronic’
potentials. For example, with ϕ(x) = 1

x
one obtains the Winternitz potential, while ϕ(x)) =

−x produces the harmonic oscillator. A simple choice of F, equation (8) or F̃ , equation (11)
can yield quite involved potentials. In particular, F(x) = αx3 gives

V (x) = mπ2

2T 2

(
αc3 − 3c2 3

√
αx + 3c

3
√

x2 − 2x
)2

. (13)

Another simple choice,

F(x) = a sinh
(x

a

)
(14)

results in

V (x) = mπ2

2T 2

(
a sinh

( c

a

) √
1 +

x2

a2
−

(
1 + cosh

( c

a

)) x

a

)2

. (15)

The latter example, which can be viewed as the one-parameter deformation of the harmonic
oscillator, will be used in what follows.

It is worthwhile writing out the action-angle variables (J,Q) for our isochronic potentials.
We have

J = 1

π

∫ x2(E)

x1(E)

√
2m(E − V (x)) dx. (16)
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Now, due to ∂E
∂J

= ω(J ) ≡ 2π
T

(T = const) and our normalization of potentials, i.e. Vmin = 0,
we obtain

J = TE

2π
≡ TH(x, p)

2π
. (17)

On the other hand, the standard formula gives

Q = mω

∫ x

x1(E)

dx√
2m(E − V (x))

≡ Q(x,E) ≡ Q(x,H(x, p)). (18)

For the potentials related to ϕ(x) or ϕ̃(x) given by equations (8) and (11), respectively,
equation (18) takes the form

Q = mω

∫ y

y1

F ′(y) dy√
2m(E − (F (c − y) − F(y))2)

y = F−1(x) (19)

Q = mω

∫ y

y1

F̃ ′(y) dy√
2m

(
E − (

F̃
(

c̃
y

) − F̃ (y)
)2) y = F̃−1(x). (20)

In general, the integrals (19), (20) cannot be computed analytically. From this point of view
F(x) given by equation (14) provides a nice exception (it belongs to the two-dimensional
representation of the translation group). The relevant explicit formula reads

Q = ψ + tanh
( c

2a

)
χ (21)

where

ψ = arcsin

[
A

(
x

a
cosh

( c

2a

)
−

√
1 +

(x

a

)2
sinh

( c

2a

))]

A = 1

TE

√
2mπa cosh

( c

2a

)

χ = arcsin

[
B

(√
1 +

(x

a

)2
cosh

( c

2a

)
− x

a
sinh

( c

2a

))]

B = π
√

2ma cosh
(

c
2a

)
T

√
E + 2mπ2a2

T 2 cosh2
(

c
2a

) .

Finally, let us note that one can construct potentials which are isochronic in some, given in
advance, energy intervals.

3. Superintegrable models

Let us assume that forces related to an integrable system of N degrees of freedom are confining
ones. Then one can introduce action-angle variables Jk,Qk, k = 1, . . . , N . The hypersurfaces
of constant action variables are Arnold–Liouville tori.

The time dependence of angle variables is given by equations

Q̇k(t) = ωk(J ) ≡ ∂H(J )

∂Jk

. (22)

The form of trajectory strongly depends on whether there exist relations of the kind
N∑

k=1

nkwk(J ) = 0 (23)



4090 C Gonera

where nk are integers which do not all vanish. If there is no such relation, the motion is
ergodic, i.e. the trajectory covers the torus densely. This implies that there exists no global
integral of motion functionally independent of action variables Jk . Indeed, if it existed the
trajectory would belong to the intersection of the Liouville torus with the level hypersurface of
this integral which is impossible if the trajectory is ergodic. To be more precise let us note that,
in general, there can exist many tori in phase space for which equation (23) holds. It can even
happen that they occupy a finite part of phase space; then the additional integrals of motion
exist which are defined only over this domain (the way to construct particular examples of
such models has been briefly sketched in [12]). On the other hand, if there is a dense subset of
phase space where no relation (23) holds then the additional integrals of motion cannot exist.

In this paper we consider models for which the relations (23) are satisfied or not satisfied
over the whole phase space. Therefore, the additional integrals, if they exist, are also defined
over the whole phase space. Then, any relation of (23) type reduces by one the dimension of
hypersurfaces to which the trajectories are confined. The related additional integral of motion
is obtained by taking any periodic function (say, sine) of

∑N
k=1 nkQk . The latter quantity is

defined modulo an integer multiple of 2π which makes the integral well defined. Moreover, the
Hamiltonian depends on N − 1 variables; it is constant along the direction �n = (n1, . . . , nN)

in the space of action variables. Such a model is called superintegrable. The maximal number
of independent relations (23) is N − 1. In this case there are N − 1 additional independent
integrals of motion constructed as above, the trajectories are closed (because all ratios ωk(J )

ωn(J )

are rational numbers) and the Hamiltonian is of the form

H(J ) = H

(
N∑

k=1

lkJk

)
lk ∈ Z. (24)

Consider now the particular case of the separated Hamiltonian

H(J ) =
N∑

k=1

Hk(Jk). (25)

For H maximally superintegrable, equations (24) and (25) imply

H(J ) = α

N∑
k=1

lkJk (26)

i.e. all frequencies are constant. This can also be seen from equation (23) if one takes into
account that ωk is a function of Jk only.

The simplest systems corresponding to (25) are provided by the Hamiltonians

H =
N∑

k=1

(
p2

k

2mk

+ Vk(xk)

)
. (27)

They are obviously integrable but generically not superintegrable. According to the above
discussion in order to get a maximally superintegrable system all Vk should be isochronic with
all ratios of periods Tk

Tl
being rational numbers, i.e. Tk = nkT , nk ∈ Z, T = const.

Therefore, the general maximally superintegrable system of (27) type is given by

H =
N∑

k=1

(
p2

k

2mk

+
mkπ

2

2n2
kT

2
(xk − ϕk(xk))

2

)
(28)

where functions ϕk are constructed as in section 2 (see equations (8) and (11)).
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Taking into account equations (16) and (18) we can write out immediately the action-angle
variables for this model

Jk = 1

π

∫ x2k(Ek)

x1k(Ek)

dx
√

2mk(Ek − (x − ϕk(x))2)

Qk = mkωk

∫ xk

x1k(Ek)

dx√
2mk(Ek − (x − ϕk(x))2)

.

(29)

Now, in order to express these angle-action variables in terms of original canonical ones one
has to replace (once the integrals on the RHS of equation (29) have been taken) Ek by Hk .
In general, this results in very complicated functions of canonical variables; in particular
these functions are not polynomial in momenta. Therefore, one cannot expect the additional
integrals of motion (superintegrals), being periodic functions of linear combinations of angle
variables, to be polynomial in momenta (see, for example, equations (14), (15) in [15]).
Finally, let us note that the canonical transformation

x̃k =
√

nkT

πmk

Jk(x, p) cos Qk(x, p) p̃k =
√

4πmk

nkT
Jk(x, p) sin Qk(x, p) (30)

converts system (28) into the set of independent oscillators

H̃ =
N∑

k=1

(
p̃2

k

2mk

+ mk

2π2

n2
kT

2
x̃2

k

)
. (31)

However, this does not mean that (28) is in any sense trivial. In fact any integrable system with
a Hamiltonian given by a linear combination of action variables can be transformed into the
set of independent oscillators as soon as one knows the action-angle variables in terms of the
original canonical ones. Actually, the problem of finding isochronic systems given by equation
(28) is equivalent to that of finding canonical transformations which transform superintegrable
harmonic oscillators into natural (i.e. kinetic energy + potential) Hamiltonians; it is the very
form of the Hamiltonians which makes the problem nontrivial.

4. Superintegrable Liouville models

The results of the previous section can be used to construct more general superintegrable
models.

Consider the Liouville system defined by the Hamiltonian [25]

H =
∑N

k=1

( p2
k

2mk
+ uk(xk)

)
∑N

k=1 sk(xk)
. (32)

It is separable; the Hamilton–Jacobi equation separates into

p2
k

2mk

+ (uk(xk) − Esk(xk)) = εk (33)

N∑
k=1

εk = 0. (34)

Therefore, the total energy E appears now as a parameter in the equivalent completely separated
Hamiltonian

H̃ =
N∑

k=1

(
p2

k

2mk

+ (uk(xk) − Esk(xk))

)
(35)
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while there is an additional constraint (34) on partial energies εk . Assume we have found
the action-angle variables (J̃ k, Q̃k) for the Hamiltonian H̃ . Then we obtain the following
relations:

εk = εk(J̃ k, E). (36)

The constraint (34) determines E in terms of action variables J̃ k:

N∑
k=1

εk(J̃ k, E) = 0. (37)

Taking derivatives with respect to J̃ l we obtain

∂εl

∂J̃ l

+

(
N∑

k=1

∂εk

∂E

)
∂E

∂J̃ l

= 0. (38)

Note that ∂E

∂J̃ l
is the actual frequency of the Liouville Hamiltonian (32) while ∂εl

∂J̃ l
is the

frequency corresponding to the lth component of the auxiliary Hamiltonian (35); these
frequencies differ by the common factor

∑N
k=1

∂εk

∂E
. We conclude that the solutions of energy

E of the system (32) are a time reparametrization of zero energy solutions of (35). This can
also be directly checked by using equations of motion. The relation between both models can
be described as follows. The trajectories of the system (32) for a given E are identical to zero
energy trajectories of (35) (where E enters as a parameter in the potential). In particular, the
former are periodic if and only if the latter are. Therefore, if (35) is maximally superintegrable
for any value of parameter E then all trajectories of (32) are periodic, i.e. (32) is also maximally
superintegrable. So the problem reduces to that of finding isochronic potentials of the form

Vk(x) = uk(x) − Esk(x). (39)

One obvious choice is to take the Winternitz potential with the energy E being identified with
coupling constant in front of the 1

x2 term; more precisely, we put

uk(x) = mkω
2
kx

2

2

sk(x) = −γ 2
k

x2
.

(40)

Then Vk(x) is, for E > 0, the Winternitz potential with the period Tk = π
ωk

. Note that this can
be reversed, i.e. one takes

uk(x) = δ2
k

x2

sk(x) = −η2
kx

2

2
.

(41)

Again, we obtain the Winternitz potential; this time the period depends on E (which plays
here the role of a parameter and not the energy of auxiliary problem (35)), Tk = π

ηk

√
mk

E
. The

E-dependence of Tk does not spoil superintegrability as long as the ratios of
√

mk

ηk
are rational

numbers. One can go even further and consider both uk and sk to be Winternitz potentials with
different coefficients. Again things can be arranged to achieve superintegrability, although the
conditions on coefficients are now more restrictive.

Another obvious possibility is to simply take uk(x) to be harmonic and sk(x) to be linear
or vice versa. Finally, we could put uk(x) = sk(x) to be any isochronic potential.
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To see that less obvious possibilities exist consider the potential given by equation (15).
It can be written in the form

V (x) = γ (E)(u(x) − Es(x) + u0(E)) (42)

where

E = 1

T 2
2mπ2a2 tanh

( c

a

)

γ (E) = 1

2

1 +
√

1 − 2(E)

1 − 2(E)

u0(E) = 1

T 2
mπ2a2

(
1 −

√
1 − 2(E)

)
(E) = ET 2

2mπ2a2

u(x) = 1

T 2
2mπ2x2

s(x) = x

a

√
1 +

x2

a2
.

(43)

Therefore,

u(x) − Es(x) = 1

γ (E)
V (x) − u0(E) (44)

is the isochronic potential with the period T (E) = T
√

γ (E) (it depends on E because E is now
a parameter entering the ‘effective’ potential (44)). Note that |E| < 2mπ2a2

T 2 and the potential
(44) is confining in this region.

Consider now the set of potentials Vk(x), k = 1, . . . , N , each of the form given by
equation (15), satisfying in addition the following requirements:

(i) ck

ak
≡ σ does not depend on k.

(ii) Tk = nkT , where nk are natural numbers while T = const and let

H =
∑N

k=1

( p2
k

2mk
+ 2mkπ

2

n2
kT

2 x2
k

)
∑N

k=1
xk

ak

√
1 + x2

k

a2
k

. (45)

Separating the variables as above we obtain the system given by equation (33) with all
potentials isochronic and corresponding periods equal nkT

√
γ (E) (note that due to the

condition (i) γ (E) is universal, i.e. does not depend on k). Therefore, all trajectories are
closed for |E| < min

(
1

n2
kT

2 2mkπ
2a2

k

)
. Our model is maximally superintegrable. Let us

also note that action-angle variables (J̃ k, Q̃k) corresponding to the auxiliary Hamiltonian
(35) are also action-angle variables for the original Hamiltonian (32) ((45) in the case under
consideration). Consequently, the general procedure of constructing the additional integrals
of motion, outlined above, applies here. Note that the whole procedure works also if one adds
an arbitrary constant in the denominator on the right-hand side of (32). So, instead of (45) we
can consider the Hamiltonian

H =
∑N

k=1

( p2
k

2mk
+ 2mkπ

2

n2
kT

2 x2
k

)
1 +

∑N
k=1

xk

ak

√
1 + x2

k

a2
k

. (46)
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This can be viewed as a deformation of a superintegrable system of harmonic oscillators; the
underformed case is attained in the limit ak → ∞, k = 1, . . . , N .

We finish this section with the remark that the problem of finding isochronic potentials of
the form (39) is, in general, far from being trivial and remains open.

5. Conclusions

Let us briefly summarize our results. We have outlined the general method for constructing
superintegrable systems for separated Hamiltonians. It should be stressed here that even for
completely separated dynamics superintegrability is a highly nontrivial property and provides
an exception rather than a rule. Our method allows us to find superintegrable systems for which
the additional integrals are, in general, very complicated and cannot be computed analytically.
In particular, they are not quadratic in momenta (and even more, not polynomials). This
implies that alternative ways of separating variables in the HJ equation can only be achieved
by general canonical transformations and not by point ones . It is rather clear that all previously
found superintegrable models with separated Hamiltonians (at least in Cartesian coordinates)
should be, more or less implicitly, embedded in our scheme (although an identification of the
relevant function F/F̃ (see equations (8), (11)) generating given superintegrable Hamiltonian
does not need to be straightforward).

Let us note that the procedure described in section 2 gives all potentials with oscillator-
like energy spectrum in the WKB approximation. However, this property does not, in
general, survive higher order corrections in h̄. This means that the energy spectrum of
corresponding superintegrable systems is degenerate also only in the WKB approximation;
classical superintegrability does not survive quantization. This can also be seen from the
complicated form of additional integrals of motion; in general, their quantum counterparts are
unlikely to exist due to ordering problems.

The most interesting aspect of our analysis seems to be its application to Liouville-
type Hamiltonians. As compared with the completely separated case these systems are
distinguished by the explicit dependence of frequencies ωk on total energy E; for example
for the models (45) or (46) we get ωk(E) = wk/

√
γ (E) with γ (E) given by (43). Liouville

systems provide an important step towards general separable systems with quadratic integrals
of motion i.e. Staeckel systems [25].
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